习 题 2.3 无穷大量

1. 按定义证明下述数列为无穷大量:

(1)
$$\left\{\frac{n^2+1}{2n+1}\right\}$$
;

(2)
$$\left\{\log_a\left(\frac{1}{n}\right)\right\}$$
 $(a>1)$;

$$(3) \{ n - \arctan n \} ;$$

$$(4) \left\{ \frac{1}{\sqrt{n+1}} + \frac{1}{\sqrt{n+2}} + \dots + \frac{1}{\sqrt{2n}} \right\} \circ$$

证 (1)
$$\forall G > 0$$
 , 取 $N = [3G]$, 当 $n > N$ 时 , 成立 $\left| \frac{n^2 + 1}{2n + 1} \right| > \frac{n}{3} > G$ 。

(2)
$$\forall G > 0$$
 , 取 $N = [a^G]$, 当 $n > N$ 时 , 成立 $\left| \log_a \left(\frac{1}{n} \right) \right| = \log_a n > G_o$

(3)
$$\forall G > 0$$
 , 取 $N = [G + \frac{\pi}{2}]$, 当 $n > N$ 时 , 成立 $|n - \arctan n| > G_o$

(4)
$$\forall G > 0$$
, 取 $N = [2G^2]$, 当 $n > N$ 时,成立

$$\left| \frac{1}{\sqrt{n+1}} + \frac{1}{\sqrt{n+2}} + \dots + \frac{1}{\sqrt{2n}} \right| > \frac{n}{\sqrt{2n}} > G_{\circ}$$

2. (1) 设 $\lim_{n\to\infty} a_n = +\infty$ (或 $-\infty$), 按定义证明:

$$\lim_{n\to\infty}\frac{a_1+a_2+\cdots+a_n}{n}=+\infty(\overline{\Box X}-\infty);$$

(2) 设 $a_n > 0$, $\lim_{n \to \infty} a_n = 0$, 利用(1)证明:

$$\lim_{n\to\infty} \left(a_1 a_2 \cdots a_n\right)^{\frac{1}{n}} = 0_{\bullet}$$

证 (1)设 $\lim_{n\to\infty}a_n=+\infty$,则 $\forall G>0,\exists N_1>0, \forall n>N_1:a_n>3G$ 。 对固定的 N_1 ,

$$\exists N > 2N_1, \forall n > N: \left| \frac{a_1 + a_2 + \dots + a_{N_1}}{n} \right| < \frac{G}{2}$$
,于是

$$\frac{a_1 + a_2 + \dots + a_n}{n} \ge \frac{a_{N_1 + 1} + a_{N_1 + 2} + \dots + a_n}{n} - \left| \frac{a_1 + a_2 + \dots + a_{N_1}}{n} \right| > \frac{3G}{2} - \frac{G}{2} = G_{\circ}$$

同理可证当
$$\lim_{n\to\infty} a_n = -\infty$$
 时,成立 $\lim_{n\to\infty} \frac{a_1 + a_2 + \cdots + a_n}{n} = -\infty$ 。

(2)
$$\ln(a_1 a_2 \cdots a_n)^{\frac{1}{n}} = \frac{\ln a_1 + \ln a_2 + \cdots + \ln a_n}{n}$$
 , 由 $\lim_{n \to \infty} \ln a_n = -\infty$, 可知

$$\lim_{n\to\infty}\ln(a_1a_2\cdots a_n)^{\frac{1}{n}}=-\infty$$
 ,从而

$$\lim_{n\to\infty} \left(a_1 a_2 \cdots a_n\right)^{\frac{1}{n}} = 0_{\bullet}$$

3. 证明:

- (1) 设 $\{x_n\}$ 是无穷大量 , $|y_n| \ge \delta > 0$, 则 $\{x_n y_n\}$ 是无穷大量 ;
- (2) 设 $\{x_n\}$ 是无穷大量 , $\lim_{n\to\infty} y_n = b$ 0 , 则 $\{x_n, y_n\}$ 与 $\left\{\frac{x_n}{y_n}\right\}$ 都是无穷大

量。

证 (1)因为 $\{x_n\}$ 是无穷大量 ,所以 $\forall G>0$, $\exists N$, $\forall n>N$,成立 $|x_n|>\frac{G}{\delta}$ 。于是 $\forall n>N$,成立 $|x_ny_n|>G$,所以 $\{x_n,y_n\}$ 也是无穷大量。

(2)曲
$$\lim_{n\to\infty} y_n = b$$
 0,可知 $\exists N'$, $\forall n > N'$, 成立 $\frac{|b|}{2} \le |y_n| \le 2|b|$ 。因为 $\{x_n\}$

是无穷大量,所以
$$\forall G>0$$
, $\exists N$ ", $\forall n>N$ ",成立 $|x_n|>\max\left\{\frac{2G}{|b|},2|b|G\right\}$ 。

取
$$N = \max\{N', N''\}$$
 , $\forall n > N$, 成立 $\left|x_n y_n\right| > G$ 与 $\left|\frac{x_n}{y_n}\right| > G$, 所以 $\{x_n y_n\}$ 与

$$\left\{\frac{x_n}{y_n}\right\}$$
都是无穷大量。

4. (1) 利用 Stolz 定理,证明:

$$\lim_{n\to\infty}\frac{1^2+3^2+5^2+\cdots+(2n+1)^2}{n^3}=\frac{4}{3};$$

(2) 求极限
$$\lim_{n\to\infty} n \left[\frac{1^2 + 3^2 + 5^2 + \dots + (2n+1)^2}{n^3} - \frac{4}{3} \right]$$

A (1)
$$\lim_{n\to\infty} \frac{1^2+3^2+5^2+\cdots+(2n+1)^2}{n^3} = \lim_{n\to\infty} \frac{(2n+1)^2}{n^3-(n-1)^3} = \frac{4}{3}$$

5. 利用 Stolz 定理, 证明:

(1)
$$\lim_{n \to \infty} \frac{\log_a n}{n} = 0$$
 (a>1);

(2)
$$\lim_{n \to \infty} \frac{n^k}{a^n} = 0$$
 (*a* > 1 , *k* 是正整数)。

iE (1)
$$\lim_{n\to\infty} \frac{\log_a n}{n} = \lim_{n\to\infty} \log_a \frac{n}{n-1} = 0_o$$

(2)
$$\lim_{n\to\infty} \frac{n^k}{a^n} = \lim_{n\to\infty} \frac{n^k - (n-1)^k}{a^n - a^{n-1}} = \lim_{n\to\infty} \frac{P_{k-1}(n)}{a^{n-1}(a-1)}$$
,

其中 $P_{k-1}(n)$ 为关于n的k-1次多项式;重复上述过程k次即得到

$$\lim_{n\to\infty} \frac{n^k}{a^n} = \lim_{n\to\infty} \frac{P_{k-1}(n)}{a^{n-1}(a-1)} = \lim_{n\to\infty} \frac{P_{k-2}(n)}{a^{n-2}(a-1)^2} = \dots = \lim_{n\to\infty} \frac{P_0(n)}{a^{n-k}(a-1)^k} = 0_{\circ}$$

- 6. (1) 在 Stolz 定理中,若 $\lim_{n\to\infty} \frac{x_n x_{n-1}}{y_n y_{n-1}} = \infty$,能否得出 $\lim_{n\to\infty} \frac{x_n}{y_n} = \infty$ 的结论?
 - (2) 在 Stolz 定理中,若 $\lim_{n\to\infty} \frac{x_n-x_{n-1}}{y_n-y_{n-1}}$ 不存在,能否得出 $\lim_{n\to\infty} \frac{x_n}{y_n}$ 不存在的结论?

解 (1) 不能。考虑例子
$$x_n = (-1)^n n$$
, $y_n = n$, $\lim_{n \to \infty} \frac{x_n - x_{n-1}}{y_n - y_{n-1}}$

$$=\lim_{n\to\infty} \frac{(-1)^n (2n-1)}{1} = \infty$$
 , 但 $\lim_{n\to\infty} \frac{x_n}{y_n} = \lim_{n\to\infty} (-1)^n$ 极限不存在。

(2) 不能。考虑例子
$$x_n = 1 - 2 + 3 - 4 + \dots + (-1)^{n-1}n$$
, $y_n = n^2$, $\lim_{n \to \infty} \frac{x_n - x_{n-1}}{y_n - y_{n-1}}$

7. 设 $0 < \lambda < 1$, $\lim_{n \to \infty} a_n = a$, 证明

$$\lim_{n\to\infty} (a_n + \lambda a_{n-1} + \lambda^2 a_{n-2} + \dots + \lambda^n a_0) = \frac{a}{1-\lambda} \circ$$

证 记 $k = \lambda^{-1}$, 则 $a_n + \lambda a_{n-1} + \dots + \lambda^n a_0 = \frac{k^n a_n + k^{n-1} a_{n-1} + \dots + a_0}{k^n}$, 利用 Stolz

定理,

$$\lim_{n \to \infty} (a_n + \lambda a_{n-1} + \lambda^2 a_{n-2} + \dots + \lambda^n a_0) = \lim_{n \to \infty} \frac{k^n a_n + k^{n-1} a_{n-1} + \dots + a_0}{k^n}$$

$$= \lim_{n \to \infty} \frac{k^n a_n}{k^{n-1} (k-1)} = \frac{a}{1-\lambda} \circ$$

8. 设 $A_n = \sum_{k=1}^n a_k$, 当 $n \to \infty$ 时有极限。{ p_n }为单调递增的正数数列,且

$$p_n \to +\infty$$
 $(n \to \infty)$ 证明:

$$\lim_{n\to\infty}\frac{p_1a_1+p_2a_2+\cdots+p_na_n}{p_n}=0 \quad \bullet$$

证 设 $\lim_{n\to\infty} A_n = A$,作代换 $a_k = A_k - A_{k-1}$,得到

$$\frac{p_1 a_1 + p_2 a_2 + \dots + p_n a_n}{p_n} = A_n - \frac{A_1 (p_2 - p_1) + A_2 (p_3 - p_2) + \dots + A_{n-1} (p_n - p_{n-1})}{p_n} ,$$

对上式求极限,在求后一分式的极限时应用 Stolz 定理,

$$\lim_{n\to\infty}\frac{p_1a_1+p_2a_2+\cdots+p_na_n}{p_n}$$

$$= \lim_{n \to \infty} A_n - \lim_{n \to \infty} \frac{A_1(p_2 - p_1) + A_2(p_3 - p_2) + \dots + A_{n-1}(p_n - p_{n-1})}{p_n}$$

$$= A - \lim_{n \to \infty} \frac{A_n(p_n - p_{n-1})}{p_n - p_{n-1}} = A - A = 0_{\circ}$$

习 题 2.4 收敛准则

1. 利用 $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e$ 求下列数列的极限:

$$\lim_{n\to\infty}\left(1-\frac{1}{n}\right)^n;$$

$$\lim_{n\to\infty}\left(1+\frac{1}{n+1}\right)^n;$$

$$\lim_{n\to\infty}\left(1+\frac{1}{2n}\right)^n;$$

$$\lim_{n\to\infty}\left(1+\frac{1}{n^2}\right)^n;$$

(5)
$$\lim_{n\to\infty} \left(1 + \frac{1}{n} - \frac{1}{n^2}\right)^n o$$

AP (1)
$$\lim_{n\to\infty} \left(1-\frac{1}{n}\right)^n = \lim_{n\to\infty} \left[\left(1+\frac{1}{n-1}\right)^{-(n-1)} \left(1+\frac{1}{n-1}\right)^{-1} \right] = \frac{1}{e}$$

(2)
$$\lim_{n\to\infty} \left(1 + \frac{1}{n+1}\right)^n = \lim_{n\to\infty} \left[\left(1 + \frac{1}{n+1}\right)^{n+1} \left(1 + \frac{1}{n+1}\right)^{-1} \right] = e_0$$

(3)
$$\lim_{n\to\infty} \left(1+\frac{1}{2n}\right)^n = \lim_{n\to\infty} \left[\left(1+\frac{1}{2n}\right)^{2n} \right]^{\frac{1}{2}} = \sqrt{e}_{o}$$

(4)
$$\lim_{n\to\infty} \left(1 + \frac{1}{n^2}\right)^n = \lim_{n\to\infty} \left[\left(1 + \frac{1}{n^2}\right)^{n^2} \right]^{\frac{1}{n}} = 1_0$$

(5) 当 $n \ge 2$ 时,有

$$\left(1 + \frac{1}{n+2}\right)^n \le \left(1 + \frac{1}{n} - \frac{1}{n^2}\right)^n < \left(1 + \frac{1}{n}\right)^n \circ$$

曲
$$\lim_{n \to \infty} \left(1 + \frac{1}{n+2}\right)^n = e$$
 与 $\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = e$,即得 $\lim_{n \to \infty} \left(1 + \frac{1}{n} - \frac{1}{n^2}\right)^n = e$ 。

2. 利用单调有界数列必定收敛的性质,证明下述数列收敛,并求出极限:

(1)
$$x_1 = \sqrt{2}$$
, $x_{n+1} = \sqrt{2 + x_n}$, $n = 1, 2, 3, \cdots$;

(2)
$$x_1 = \sqrt{2}$$
, $x_{n+1} = \sqrt{2x_n}$, $n = 1,2,3,\cdots$;

(3)
$$x_1 = \sqrt{2}, x_{n+1} = \frac{-1}{2 + x_n}, n = 1, 2, 3, \dots$$

(4)
$$x_1 = 1$$
, $x_{n+1} = \sqrt{4 + 3x_n}$, $n = 1, 2, 3, \cdots$;

(5)
$$0 < x_1 < 1$$
, $x_{n+1} = 1 - \sqrt{1 - x_n}$, $n = 1, 2, 3, \cdots$;

(6)
$$0 < x_1 < 1, x_{n+1} = x_n (2 - x_n), n = 1, 2, 3, \dots$$

解 (1)首先有 $0 < x_1 = \sqrt{2} < 2$,设 $0 < x_k < 2$,则 $0 < x_{k+1} = \sqrt{2 + x_k} < 2$,由数学归纳法可知 $\forall n$, $0 < x_n < 2$ 。由

$$x_{n+1} - x_n = \sqrt{2 + x_n} - \sqrt{2 + x_{n-1}} = \frac{x_n - x_{n-1}}{\sqrt{2 + x_n} + \sqrt{2 + x_{n-1}}} \quad ,$$

可知数列 $\{x_{n+1}-x_n\}$ 保持同号;再由 $x_2-x_1>0$,可知 $\forall n$, $x_{n+1}-x_n>0$,所以 $\{x_n\}$ 是单调增加有上界的数列,因此收敛。设 $\lim_{n\to\infty}x_n=a$,对等式 $x_{n+1}=\sqrt{2+x_n}$ 两端求极限,得到方程 $a=\sqrt{2+a}$,解此方程,得到a=2,因此

$$\lim_{n\to\infty} x_n = 2_{\circ}$$

(2) 首先有 $0 < x_1 = \sqrt{2} < 2$,设 $0 < x_k < 2$,则 $0 < x_{k+1} = \sqrt{2x_k} < 2$,由数学归纳法可知 $\forall n$, $0 < x_n < 2$ 。由 $x_{n+1} - x_n = \sqrt{2x_n} - x_n = \sqrt{x_n}(\sqrt{2} - \sqrt{x_n}) > 0$,可知 $\{x_n\}$ 是单调增加有上界的数列,因此收敛。设 $\lim_{n \to \infty} x_n = a$,对等式 $x_{n+1} = \sqrt{2x_n}$ 两端求极限,得到方程 $x_n = \sqrt{2x_n}$,解此方程,得到 $x_n = \sqrt{2x_n}$,因此

$$\lim_{n\to\infty} x_n = 2_{\,\bullet}$$

(3) 首先有 $x_1 = \sqrt{2} > -1$,设 $x_k > -1$,则 $x_{k+1} = \frac{-1}{2 + x_k} > -1$,由数学

归纳法可知 $\forall n$, $x_n > -1$ 。由 $x_{n+1} - x_n = \frac{-1}{2+x_n} - x_n = -\frac{(x_n+1)^2}{2+x_n} < 0$,可知 $\{x_n\}$ 是单调减少有下界的数列 ,因此收敛。设 $\lim_{n\to\infty} x_n = a$,对等式 $x_{n+1} = \frac{-1}{2+x_n}$ 两端求极限 ,得到方程 $a = \frac{-1}{2+a}$,解此方程 ,得到 a = -1 ,因此

$$\lim_{n\to\infty}x_n=-1_{\,\mathbf{o}}$$

(4)首先有 $0 < x_1 = 1 < 4$,设 $0 < x_k < 4$,则 $0 < x_{k+1} = \sqrt{4 + 3x_k} < 4$,由数学归纳法可知 $\forall n$, $0 < x_n < 4$ 。由 $x_{n+1}^2 - x_n^2 = 4 + 3x_n - x_n^2 = (4 - x_n)(1 + x_n) > 0$,可知 $\{x_n\}$ 是单调增加有上界的数列,因此收敛。设 $\lim_{n \to \infty} x_n = a$,对等式 $x_{n+1} = \sqrt{4 + 3x_n}$ 两端求极限,得到方程 $x_n = x_n =$

$$\lim_{n\to\infty} x_n = 4_{\,\mathbf{o}}$$

(5)首先有 $0 < x_1 < 1$,设 $0 < x_k < 1$,则 $0 < x_{k+1} = 1 - \sqrt{1 - x_k} < 1$,由数学归纳法可知 $\forall n$, $0 < x_n < 1$ 。由 $x_{n+1} - x_n = 1 - x_n - \sqrt{1 - x_n} < 0$,可知 $\{x_n\}$ 是单调减少有下界的数列,因此收敛。设 $\lim_{n \to \infty} x_n = a$,对等式 $x_{n+1} = 1 - \sqrt{1 - x_n}$ 两端求极限,得到方程 $a = 1 - \sqrt{1 - a}$,解此方程,得到a = 0(另一解a = 1 舍去),因此

$$\lim_{n\to\infty} x_n = 0_{\,\bullet}$$

(6) 首先有 $0 < x_1 < 1$,设 $0 < x_k < 1$,则 $0 < x_{k+1} = x_k (2 - x_k) < 1$,由数学归纳法可知 $\forall n$, $0 < x_n < 1$ 。由 $x_{n+1} - x_n = x_n (2 - x_n) - x_n = x_n (1 - x_n) > 0$,可知 $\{x_n\}$ 是单调增加有上界的数列,因此收敛。设 $\lim_{n \to \infty} x_n = a$,对等式 $x_{n+1} = x_n (2 - x_n)$ 两端求极限,得到方程 $x_n = a = a(2 - a)$,解此方程,得到 $x_n = a = a(2 - a)$,因此

$$\lim_{n\to\infty} x_n = 1_{\bullet}$$

3. 利用递推公式与单调有界数列的性质,证明:

(1)
$$\lim_{n\to\infty} \frac{2}{3} \cdot \frac{3}{5} \cdot \frac{4}{7} \cdot \dots \cdot \frac{n+1}{2n+1} = 0$$
;

(2)
$$\lim_{n\to\infty} \frac{a^n}{n!} = 0$$
 $(a > 1)$;

$$(3) \lim_{n\to\infty}\frac{n!}{n^n}=0_{\,\bullet}$$

证 (1)设 $x_n = \frac{2}{3} \cdot \frac{3}{5} \cdot \frac{4}{7} \cdot \dots \cdot \frac{n+1}{2n+1}$,则 $x_n > 0$, $\frac{x_{n+1}}{x_n} = \frac{n+2}{2n+3} < 1$,所以 $\{x_n\}$ 是

单调减少有下界的数列,因此收敛。设 $\lim_{n\to\infty}x_n=a$,对等式 $x_{n+1}=\frac{n+2}{2n+3}x_n$

两端求极限,得到
$$a = \frac{1}{2}a$$
,于是 $a = 0$,因此

$$\lim_{n \to \infty} \frac{2}{3} \cdot \frac{3}{5} \cdot \frac{4}{7} \cdot \dots \cdot \frac{n+1}{2n+1} = 0_{\circ}$$

(2)设 $x_n = \frac{a^n}{n!}$,则 $x_n > 0$,且当n > a时, $\frac{x_{n+1}}{x_n} = \frac{a}{n+1} < 1$,所以 $\{x_n\}$ 从

某一项开始是单调减少有下界的数列,因此收敛。设 $\lim_{n\to\infty}x_n=x$,对等 式 $x_{n+1}=\frac{a}{n+1}x_n$ 两端求极限,得到 x=0 ,因此

$$\lim_{n\to\infty}\frac{a^n}{n!}=0$$

(3)设 $x_n = \frac{n!}{n^n}$,则 $x_n > 0$, $\frac{x_n}{x_{n+1}} = \left(1 + \frac{1}{n}\right)^n > 1$,所以 $\{x_n\}$ 是单调减少有

下界的数列,因此收敛。设 $\lim_{n\to\infty}x_n=a$,对等式 $x_n=\left(1+\frac{1}{n}\right)^nx_{n+1}$ 两端求极

限,得到a=ea,于是a=0,因此

$$\lim_{n\to\infty}\frac{a^n}{n!}=0_{\,\bullet}$$

4. 设 $x_{n+1} = \frac{1}{2} \left(x_n + \frac{2}{x_n} \right)$, $n = 1, 2, 3, \cdots$, 分 $x_1 = 1$ 与 $x_1 = -2$ 两种情况求

 $\lim_{n\to\infty} x_n$

解 对 $x_1 = 1$, 易知 $\forall n$, $x_n > 0$, 且当 $n \ge 2$ 时 , $x_n \ge \sqrt{2}$ 。由

 $x_{n+1}-x_n=-\frac{x_n}{2}+\frac{1}{x_n}\leq 0$,可知数列 $\{x_n\}$ 单调减少有下界,所以收敛。设

 $\lim_{n\to\infty} x_n = a$, 对等式 $x_{n+1} = \frac{1}{2} \left(x_n + \frac{2}{x_n} \right)$ 两端求极限 , 得到 $a = \frac{1}{2} (a + \frac{2}{a})$, 解得

 $a=\sqrt{2}$ ($a=-\sqrt{2}$ 舍去), 因此

$$\lim_{n\to\infty} x_n = \sqrt{2} \, \, \mathbf{0}$$

对 $x_1=-2$,易知 $\forall n$, $x_n \le -\sqrt{2}$ 。 由 $x_{n+1}-x_n=-\frac{x_n}{2}+\frac{1}{x_n}\ge 0$,可知数

列 $\{x_n\}$ 单调增加有上界 ,所以收敛。设 $\lim_{n\to\infty}x_n=b$,对等式 $x_{n+1}=\frac{1}{2}\left(x_n+\frac{2}{x_n}\right)$

两端求极限,得到 $b = \frac{1}{2}(b + \frac{2}{b})$,解得 $b = -\sqrt{2}$ ($b = \sqrt{2}$ 舍去),因此

$$\lim_{n \to \infty} x_n = -\sqrt{2} \circ$$

5. $\Re x_1 = a, x_2 = b, x_{n+2} = \frac{x_{n+1} + x_n}{2}$ ($n = 1, 2, 3, \cdots$), $\Re \lim_{n \to \infty} x_n$ o

解 首先利用递推公式 $x_{n+1}-x_n=-\frac{1}{2}(x_n-x_{n-1})$, 得到数列 $\{x_{n+1}-x_n\}$ 的通

项公式
$$x_{n+1} - x_n = \left(-\frac{1}{2}\right)^{n-1} (b-a)$$
。 于是由

$$x_n = x_1 + (x_2 - x_1) + (x_3 - x_2) + \dots + (x_n - x_{n-1}) = a + (b - a) \sum_{k=0}^{n-1} \left(-\frac{1}{2}\right)^k$$

得到

$$\lim_{n\to\infty} x_n = \frac{a+2b}{3} \circ$$

6. 给定 0 < a < b , 令 $x_1 = a, y_1 = b$ 。

证明 { x_n }, { y_n } 收敛 , 且 $\lim_{n\to\infty} x_n = \lim_{n\to\infty} y_n$ 。这个公共极限称

为a与b的**算术几何平均**;

(2) 若 $x_{n+1} = \frac{x_n + y_n}{2}$, $y_{n+1} = \frac{2x_n y_n}{x_n + y_n}$ ($n = 1, 2, 3, \cdots$),证明{ x_n },{ y_n } 收敛,且 $\lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n$ 。这个公共极限称为a与b的算术调和平均。

证 (1)首先易知 $\forall n$,有 $x_n \leq y_n$ 。由 $x_{n+1} - x_n = \sqrt{x_n} (\sqrt{y_n} - \sqrt{x_n}) \geq 0$, $y_{n+1} - y_n$ $= \frac{1}{2} (x_n - y_n) \leq 0$,得到 $a \leq x_n < x_{n+1} < y_{n+1} < y_n \leq b$,即 $\{x_n\}$ 是单调增加有上界的数列, $\{y_n\}$ 是单调减少有下界的数列,所以它们收敛。设 $\lim_{n \to \infty} x_n = x$, $\lim_{n \to \infty} y_n = y$,对 $y_{n+1} = \frac{x_n + y_n}{2}$ 的两端求极限,得到 x = y 。

(2) 首先易知当 $n \ge 2$ 时,有 $x_n \ge y_n$ 。由 $x_{n+1} - x_n = \frac{1}{2}(y_n - x_n) \le 0$,

 $y_{n+1} - y_n = \frac{y_n(x_n - y_n)}{x_n + y_n} \ge 0$, 得到当 $n \ge 2$ 时 ,

 $\frac{2ab}{a+b} \le y_n < y_{n+1} < x_n \le \frac{a+b}{2} \text{ , } \mathbb{D}\{y_n\}$ 是单调增加有上界的数列, $\{x_n\}$ 是单调减少有下界的数列,所以它们收敛。设 $\lim_{n\to\infty} x_n = x$, $\lim_{n\to\infty} y_n = y$, 对 $x_{n+1} = \frac{x_n + y_n}{2}$ 的两端求极限,得到 x = y 。

7. 设 $x_1 = \sqrt{2}, x_{n+1} = \frac{1}{2+x_n}$ ($n = 1, 2, 3, \cdots$), 证明数列 { x_n } 收敛,并求极限 $\lim_{n \to \infty} x_n$ 。

解 当 $0 < x_n < \sqrt{2} - 1$ 时,有 $x_{n+1} > \sqrt{2} - 1$;当 $x_n > \sqrt{2} - 1$ 时,有 $0 < x_{n+1} < \sqrt{2} - 1$ 。

由于 $x_1 = \sqrt{2} > \sqrt{2} - 1$,得到 $\forall n$, $x_{2n+1} > \sqrt{2} - 1$, $0 < x_{2n} < \sqrt{2} - 1$ 。 于是由

$$x_{2n+1} - x_{2n-1} = \frac{2 + x_{2n-1}}{5 + 2x_{2n-1}} - x_{2n-1} = \frac{-2(x_{2n-1} - \sqrt{2} + 1)(x_{2n-1} + \sqrt{2} + 1)}{5 + x_{2n-1}} < 0 ,$$

$$x_{2n+2} - x_{2n} = \frac{2 + x_{2n}}{5 + 2x_{2n}} - x_{2n} = \frac{-2(x_{2n} - \sqrt{2} + 1)(x_{2n} + \sqrt{2} + 1)}{5 + x_{2n}} > 0 ,$$

可知数列 $\{x_{2n-1}\}$ 单调减少有下界,数列 $\{x_{2n}\}$ 单调增加有上界,从而都收敛。

设
$$\lim_{n\to\infty} x_{2n} = a$$
 , $\lim_{n\to\infty} x_{2n-1} = b$, 对等式 $x_{2n+1} = \frac{2+x_{2n-1}}{5+2x_{2n-1}}$ 与 $x_{2n+2} = \frac{2+x_{2n}}{5+2x_{2n}}$ 两端求极限 , 得到方程 $a = \frac{2+a}{5+2a}$ 与 $b = \frac{2+b}{5+2b}$, 解此两方程 , 得到解 $a = \sqrt{2} - 1$ 与 $b = \sqrt{2} - 1$ (另两解 $a = -\sqrt{2} - 1$ 与 $b = -\sqrt{2} - 1$ 舍去),因此 $\lim_{n\to\infty} x_n = \sqrt{2} - 1$ 。

8. 设 { x_n } 是一单调数列 , 证明 $\lim_{n\to\infty} x_n = a$ 的充分必要条件是:存在 { x_n } 的子列 { x_{n_k} } 满足 $\lim_{n\to\infty} x_{n_k} = a$ 。

证 必要性显然,现证充分性。不妨设 { x_n } 单调增加, $\lim_{k\to\infty} x_{n_k}=a$, 则 $\forall \varepsilon>0$, $\exists K$, $\forall k>K$: $-\varepsilon< x_{n_k}-a\leq 0$ 。 取 $N=n_{K+1}$, $\forall n>N$, $\exists M>K+1\quad ,$ 使得 $n_{K+1}< n< n_M$,于是 $-\varepsilon< x_{n_{K+1}}-a\leq x_n-a\leq x_{n_M}-a\leq 0$, 因此 $\lim_{n\to\infty} x_n=a$ 。

9. 若有界数列 { x_n } 不收敛,则必存在两个子列 { $x_{n_k^{(1)}}$ } 与 { $x_{n_k^{(2)}}$ } 收敛于不同的极限,即 $\lim_{k\to\infty}x_{n_k^{(1)}}=a$, $\lim_{k\to\infty}x_{n_k^{(2)}}=b$, a b 。

证 由于 { x_n } 不收敛,所以 $\exists \varepsilon_0 > 0$, $\forall N$, $\exists m > n > N$: $|x_m - x_n| \ge \varepsilon_0$ 。

取
$$N_2=m_1$$
 , $\exists m_2>n_2>N_2$: $\left|x_{m_2}-x_{n_2}\right|\geq \varepsilon_0$,,

于是得到 $\{x_n\}$ 的两个子列 $\{x_{n_k}\}$ 与 $\{x_{m_k}\}$, 它们都是有界数列。 首先 $\{x_{n_k}\}$ 具有收敛子列 $\{x_{n_{k'}}\}$, 由于对应的 $\{x_{m_{k'}}\}$ 也是有界数列 , 又具有收敛子列 $\{x_{m_{k'}}\}$ 记 $\{n_k"\}=\{n_k^{(1)}\}$, $\{m_k"\}=\{n_k^{(2)}\}$,则得到 $\{x_n\}$ 的两个子列 $\{x_{n_k^{(1)}}\}$ 与 $\{x_{n_k^{(2)}}\}$,它们收敛于不同的极限。

- 10. 若数列 $\{x_n\}$ 无界,但非无穷大量,则必存在两个子列 $\{x_{n_k^{(1)}}\}$ 与 $\{x_{n_k^{(2)}}\}$,其中 $\{x_{n_k^{(1)}}\}$ 是无穷大量, $\{x_{n_k^{(2)}}\}$ 是收敛子列。
- 证 由于数列 $\{x_n\}$ 不是无穷大量,所以 $\exists M>0$,使得数列 $\{x_n\}$ 中有无穷多项满足 $|x_n|\leq M$,于是从中可以取出数列 $\{x_n\}$ 的一个收敛子列 $\{x_{m_k}\}$ 。又由于数列 $\{x_n\}$ 无界,所以对 $\forall G>0$,数列 $\{x_n\}$ 中必有无穷多项满足 $|x_n|>G$ 。

取 $G_1=1$,则 $\exists n_1$,使得 $\left|x_{n_1}\right|>G_1$,

取 $G_2 = 2$,则 $\exists n_2 > n_1$,使得 $\left| x_{n_2} \right| > G_2$, ……

取 $G_k = k$,则 $\exists n_k > n_{k-1}$,使得 $\left| x_{n_k} \right| > G_k$,

记 $\{n_k\} = \{n_k^{(1)}\}$, $\{m_k\} = \{n_k^{(2)}\}$, 则得到 $\{x_n\}$ 的两个子列 $\{x_{n_k^{(1)}}\}$ 与 $\{x_{n_k^{(2)}}\}$, 其中 $\{x_{n_k^{(1)}}\}$ 是无穷大量, $\{x_{n_k^{(2)}}\}$ 是收敛子列。

- 11. 设S 是非空有上界的数集, $\sup S = a \in S$ 。证明在数集S中可取出严格单调增加的数列 $\{x_n\}$,使得 $\lim_{n\to\infty} x_n = a$ 。

集 S 中取到了严格单调增加的数列 $\{x_n\}$,使得 $\lim_{n\to\infty} x_n = a$ 。

12. 设 $\{(a_n,b_n)\}$ 是一列开区间,满足条件:

(1)
$$a_1 < a_2 < \ldots < a_n < \ldots < b_n < \ldots < b_2 < b_1$$
,

$$(2) \lim_{n\to\infty} (b_n - a_n) = 0_{\mathbf{o}}$$

证明存在唯一的实数 ξ 属于所有的开区间 (a_n,b_n) ,且 $\xi = \lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n$ 。

证 根据题意, $\{a_n\}$ 单调增加有上界, $\{b_n\}$ 单调减少有下界,因此都收敛。设 $\lim_{n\to\infty}a_n=\xi$,则 $\lim_{n\to\infty}b_n=\lim_{n\to\infty}[a_n+(b_n-a_n)]=\xi$ 。由于 $\{a_n\}$ 严格单调增加, $\{b_n\}$ 严格单调减少,可知 $\forall n$,有 $a_n<\xi< b_n$,即 ξ 属于所有的开区间 (a_n,b_n) 。

若存在另一 ξ '属于所有的开区间 (a_n,b_n) ,则由 $a_n<\xi'< b_n$,利用极限的夹逼性,得到 $\xi'=\lim_{n\to\infty}a_n=\lim_{n\to\infty}b_n=\xi$,即满足题意的 ξ 是唯一的。

13. 利用 Cauchy 收敛原理证明下述数列收敛:

(1)
$$x_n = a_0 + a_1 q + a_2 q^2 + \dots + a_n q^n \quad (|q| < 1, |a_k| \le M)$$
;

(2)
$$x_n = 1 - \frac{1}{2} + \frac{1}{3} - \dots + (-1)^{n+1} \frac{1}{n}$$

证 (1)
$$\forall \varepsilon (0 < \varepsilon < \frac{M}{1 - |q|})$$
,取 $N = \left\lceil \frac{\ln \frac{(1 - |q|)}{M} \varepsilon}{\ln |q|} \right\rceil$,当 $n > N$ 时,成立

$$\left| \sum_{k=n+1}^{m} a_k q^k \right| \leq M \left| q \right|^{n+1} (1 + \left| q \right| + \left| q \right|^2 + \dots + \left| q \right|^{m-n-1}) < \frac{M}{1 - \left| q \right|} \left| q \right|^{n+1} < \varepsilon_{\bullet}$$

(2)
$$\forall \varepsilon > 0$$
 , 取 $N = \left[\frac{1}{\varepsilon}\right]$, 当 $n > N$ 时 ,成立 $\left|\sum_{k=n+1}^{m} (-1)^{k+1} \frac{1}{k}\right| < \frac{1}{n+1} < \varepsilon$ 。

14. (1) 设数列 $\{x_n\}$ 满足条件 $\lim_{n\to\infty} |x_{n+1}-x_n|=0$,问 $\{x_n\}$ 是否一定是基本数列。

(2) 设数列 $\{x_n\}$ 满足条件 $\|x_{n+1}-x_n\| < \frac{1}{2^n}(n=1,2,3,\cdots)$ 。证明 $\{x_n\}$ 是基本数列。

解(1)不一定。反例:
$$x_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$$
。

(2)
$$\forall \varepsilon (0 < \varepsilon < 1)$$
 , 取 $N = 1 + \left[\frac{\ln \varepsilon}{\ln \frac{1}{2}}\right]$, $\forall m > n > N$, 成立

$$|x_m - x_n| \le |x_m - x_{m-1}| + |x_{m-1} - x_{m-2}| + \dots + |x_{n+1} - x_n|$$

$$<\frac{1}{2^n}+\frac{1}{2^{n+1}}+\cdots+\frac{1}{2^{m-1}}<\left(\frac{1}{2}\right)^{n-1}<\varepsilon_{0}$$

15. 对于数列 $\{x_n\}$ 构造数集 A_k :

$$A_k = \{ x_n \mid n = k \} = \{ x_k, x_{k+1}, \dots \}_{o}$$

记 $\operatorname{diam} A_k = \sup\{ \mid x_n - x_m \mid , x_n \in A_k, x_m \in A_k \}$, 证明数列 $\{x_n\}$ 收敛的充分必要条件是

$$\lim_{k\to\infty} \operatorname{diam} A_k = 0_{\bullet}$$

证 因为 $\lim_{k\to\infty} \operatorname{diam} A_k = 0$, $\forall \varepsilon > 0$, $\exists K$, $\forall k > K$, 成立 $\operatorname{diam} A_k < \varepsilon$ 。 取 N = K , 则 $\forall m > n > N$, 成立 $|x_m - x_n| \leq \operatorname{diam} A_{k+1} < \varepsilon$ 。

16. 利用 Cauchy 收敛原理证明:单调有界数列必定收敛。

证 采用反证法。不妨设 $\{x_n\}$ 是单调增加的有界数列。假设它不收敛,

则
$$\exists \varepsilon_0 > 0$$
 , $\forall N > 0$, $\exists m, n > N$: $\left| x_m - x_n \right| > \varepsilon_0$ o

取
$$N_2 = m_1, \exists m_2 > n_2 > N_2 : x_{m_2} - x_{n_2} > \varepsilon_0;$$

.

于是 $x_{m_k} - x_{n_1} > k\varepsilon_0 \to +\infty \ (k \to \infty)$,与数列 $\{x_n\}$ 有界矛盾。